Approximation of convex discs by polygons

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering by Dismembered Convex Discs

Let us consider a great number of convex discs not "too different" from one another about which, apart from their total area, no further data are known. What can be said about the area of the largest square (or any other domain of given shape) which can be covered with the aid of these discs if we are allowed to cut each of them into a given number of suitable pieces? Analogously, we can raise ...

متن کامل

Approximation by Polygons and Polyhedra

In order to investigate as to what order of magnitude a plane (or a skew) curve can be approximated by w-sided polygons, we have to start from a definition of the deviation. One of the usual definitions is as follows: the deviation ij(H, K) of two curves H and K is the smallest number rj for which H is contained in the neighbourhood of K with radius v\ and conversely K is contained in the neigh...

متن کامل

Convexity of Sub-polygons of Convex Polygons

A convex polygon is defined as a sequence (V0, . . . , Vn−1) of points on a plane such that the union of the edges [V0, V1], . . . , [Vn−2, Vn−1], [Vn−1, V0] coincides with the boundary of the convex hull of the set of vertices {V0, . . . , Vn−1}. It is proved that all sub-polygons of any convex polygon with distinct vertices are convex. It is also proved that, if all sub-(n − 1)-gons of an n-g...

متن کامل

Dissections of Polygons into Convex Polygons

In the paper we present purely combinatorial conditions that allow us to recognize the topological equivalence (or non-equivalence) of two given dissections. Using a computer program based on this result, we are able to generate a set which contains all topologically non-equivalent dissections of a p0-gon into convex pi-gons, i = 1, ..., n, where n, p0, ..., pn are integers such that n ≥ 2, pi ...

متن کامل

Tilings of convex polygons

© Annales de l’institut Fourier, 1997, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 1986

ISSN: 0179-5376,1432-0444

DOI: 10.1007/bf02187698